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Abstract: Today, epilepsy keeps its importance as a major 
brain disorder. However, although some devices such as 
magnetic resonance (MR), brain tomography  (BT) are 
used to diagnose the structural disorders of brain, for 
observing some special illnesses especially such as 
epilepsy, EEG is routinely used for observing the epileptic 
seizures, in neurology clinics. In our study, we aimed to 
classify the EEG signals and diagnose the epileptic 
seizures directly by using wavelet transform and an 
artificial neural network model. 

EEG signals are separated into δδ, θθ, αα, and ββ spectral 
components by using wavelet transform. These spectral 
components are applied to the inputs of the neural 
network. Then, neural network is trained to give three 
outputs to signify the health situation of the patients 
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I. INTRODUCTION 
 

In medicine, EEG keeps its importance for identifying the 
physiological, and the   psychological situations of the human 
and the functional activity of the brain. In neurology clinics 
EEG device is used efficiently for observing the brain 
disorders. 

According to the spectral components, and the amplitudes 
of these spectral components, which EEG consists, different 
interpretations can be made about the recorded waveform 
(the patient is healthy or not). The most important frequency 
component of the human’s EEG is α wave (approximately 
between 8-12Hz), and α wave is sometimes called as the 
natural frequency of the brain (1). This wave appears when 
the eyes are closed and one begins to rest. In epilepsy cases, 
however, when the epileptic seizures occurs, δ, θ waves, 
which have lower frequencies, and higher magnitudes with 
respect to α waves, should be seen (δ, θ waves has 0-4Hz, 4-
8Hz frequency ranges, respectively). In addition, brain 
produces desynchronize waves, which have higher frequency, 
lower magnitude, called β waves (frequency range is higher 
than 13Hz). Therefore, for diagnosing the brain disorders, 
these spectral components must be analyzed carefully. 

When the EEG waveform is observed, it is seen that EEG 
waveform is a non-stationary signal. For this reason, when 
the frequency components of the EEG is extracted by using 
the Short Time Fourier Transform (STFT) and the wavelet 
transform, including stft, should be useful than the other 
spectrum analyzing methods (AR, ARMA, FFT etc).  
Furthermore, viewing the results of the wavelet transform in 
time domain should be useful to make additional comments. 

After these processes, if we think that the person who 
diagnoses the illnesses is a doctor, use of an artificial neural 
network (ANN) should be offered. Because, by using the 
artificial neural network should minimize the errors done by 
doctors when they diagnose the illness 
In our study, EEG data sets are collected by a system, which 
has been used in our previous studies. From the EEG data 
sets, obtained δ, θ, α, and β waves are extracted by using 
wavelet transform. After all, according to these waves an 
artificial neural network trained, and developed to diagnose 
the epileptic cases. 
 

II . MATERTIALS AND METHODS 
 

A. Obtaining The EEG Data Sets 
 

In our previous studies, a data accusation and processing 
unit (PCI-MIO-16-E4) is used to record the EEG data to 
make computer-based analysis. Recordings have been made 
as 202 samples during 6 seconds. The accusation unit has a 
12 bits analog to digital converter (AD 7572, % 0.02 
sensitivity, 0.014ms conversion time) to discritisize the EEG 
waveform. The EEG recording unit is shown in fig. 1. 
 
B. Wavelet Transform 
 

If a signal does not change much over time, we would call 
it as a stationary signal. Fourier transform could be applied to 
the stationary signals easily and good result can be taken. 
However, like EEG, a plenty of signals contain non-
stationary or transitory characteristics, and Fourier Transform 
is not suited properly to detect the non-stationary signals. 
 

 

Fig. 1. Data acquisition system 
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In an effort to correct this deficiency, Dennis Gabor (1946) 
adapted the Fourier transform to analyze only a small section 
of the signal at a time, which is called as Short Time Fourier 
Transform. One of the major features of stft is mapping the 
signal in two-dimensional function of time and frequency. 

The Wavelet Transform decomposes a signal onto a set of 
basic functions called wavelets. These basic functions are 
obtained by dilations, contractions and shifts of a unique 
function called the wavelet prototype. 
In order to the input signal x(t), Wavelet Transform should be 
separated as Continuous Wavelet Transform (CWT) and 
Discrete Wavelet Transform (DWT). We can identify the 
CWT as in (1); 
 
                             CWT(a,b)=∫ x(t).Ψ*a,b(t).dt                     (1) 
 
where  * denotes the complex conjugate, a∈R+ represents the 
scale parameter, b ∈R+ represents the translation, and Ψa,b(t) 
is obtained by scaling the prototype wavelet Ψ(t) at a time b, 
and scale a as in (2); 
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Generally in wavelet applications, orthogonal dyadic 

functions are chosen as the mother wavelet. This transform is 
often discritisized in a and b on a dyadic grid with the time 
remaining continuous. The mother wavelet, commonly used, 
is (3); 

 

      ( )ktt jj
kj −Ψ=Ψ −− 22)( 2/

,                              (3) 

 
where { Ψj,k(t),j,k∈Z} for L2(R) 
 
C. Artificial Neural Network 
 
 Neural networks are used as a powerful means in 
engineering area after the development especially, in 
computer technology. The fundamental characteristic of the 
neural networks is an adaptive, non-algorithmic and parallel-
distributed memory [1].  
Artificial neural networks are modeled by inspiring from 
biological neural system and have a more simple structure. 
Many neural networks were developed for resembling several 
known characteristics of biological neural networks such as 
learning and reacting. Some characteristics, however, are 
realized with an engineering approach instead of 
neuropsychological one [2].    
 

II I. EXPERIMENTAL STUDY 
 

 In this study, first EEG waveforms have been recorded by 
a data acquisition and processing unit. One of the recorded 
EEG waveform is shown below. Then, the wavelet 
transforms of the recorded EEG waveforms are taken by 
using daubechies wavelets. Recorded EEG waveforms are 

first divided into low and high wavelet coefficients, and these 
low and high wavelet coefficients are divided in to their sub-
high and sub low coefficients. Therefore, δ, θ, α, and β 
wavelets of the original EEG waveform are obtained.  
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Fig. 2. Simulated EEG waveform and its spectral components due to wavelet          

transform 

The results of Wavelet Transform of the different EEG’s are 
shown in figure 2, 3, and 4. 

In these figures first the EEG waveform has been given. 
Then the sub-spectral components depending each EEG are 
given. The δ, θ, α, and β waves are viewed in the figure by 
the following windows. And figures 2,3,4 show the EEG 
waveforms as simulation, healthy and epileptic respectively. 

Classification is based on the partition of every section of 
the space formed by EEG wavelet signals and determination 
of a partitioning function related with those sections; in case 
of the ignorance of the mathematical forms of the partitioning 
functions, first a learning activity should be realized. 
Learning activity provides the determination of the real 
values of these functions with the aid of the examples from 
every class (training set) [3]. Since the classifiers are based 
on deciding by learning, they lead to more successful results 
with respect to the traditional (non-learning) methods [4].  
 Back propagation network is a multi-layer feed forward 
networks. It is an artificial neural network between the input 
and an output layer, of which more than one layer is used. In 
these immediate layers called as hidden layer, there are 
processing elements, which don’ t receive input and give 
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output without any means. The general layout of a multi-
layer neural network classifier, shown in fig. 5.  is given [5]. 
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Fig. 3. Epileptic EEG waveform and its spectral components due to wavelet 

transform 
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Fig. 4. Normal EEG waveform and its spectral components due to wavelet 

transform 
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Fig.5.  Multi layer feed forward neural network classifier. 

 
Then the training characteristics of neural network used in 
this study are as follows;  
 
Structure: 
 Layer number: 3 

 The number of neuron on the layers:  (4x202) - 15 -3  

Training Parameters: 

 Adaptive learning coeff icient: 0.0005  

 Momentum coeff icient: 0.95 

 Sum-squared error-sse:  0.0005 

 Activation Function: tangent   sigmoid  

 The variation of system error in according to the learning 
iteration during the training stage of back propagation 
network is given in fig. 5. There is not any instabil ity or 
roughness in training process of the network. This shows the 
convenience of the parameters chosen to train the networks.  
 In the second stage, the trained network was tested with 
EEG wavelet signals. As a result it was seen that by 
observing the output vector produced by the network it was 
possible to diagnose the disease.  
 Finally several types of EEG recordings that we have used 
in the study have tested the developed network. And the 
responses of the network to these test signals are shown in 
table 1. 
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Fig. 6.  s.s.e and learning rate versus iteration number 

 
Table 1. Result of the test signals 

Signals Diagnosis Recognition 
Rate (%) 

Test signal 1 Epileptic 97 
Test signal 2 Healthy 95 
Test signal 3 Healthy 98 
Test signal 4 Healthy 97 
Test signal 5 Healthy 95 
Test signal 6 Pathologic 93 

 
 

IV. CONCLUSION 
 

 In our study, we have tried to find a new solution for 
diagnosing the epilepsy. For this aim, the Wavelet Transform 
of the EEG signals have taken, and the δ, θ, α, and β sub-
frequencies are extracted. Depending on these sub-
frequencies an artificial neural network has been developed 
and trained. The accuracy of the neural network outputs is 
too high (%97 for epileptic case, %98 for healthy case, and % 
93 for pathologic case that have been tested). This means that 
this neural network identifies the health conditions of the 
patients approximately as 90 of 100. From this point we can 
say that an application of this theoretical study wil l be helpful 
for the neurologists when they diagnose the epilepsy. 

Furthermore we want to develop the practical application 
of this study. After all a small model of this system will be 
very useful for the patients suffer from epilepsy.  
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